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We present a method to compute harmonic vibrations that uses the structures and the forces in the structures
that are obtained from a geometry optimization. It does not require any additional electronic structure calcu-
lations. The method generally takes only on the order of minutes on a regular PC, but it does not guarantee the
calculation of all vibrations of a system. Tests on small adsorbates on a transition metal surface show, however,
that the most relevant vibrations are obtained. An important part of the method is the inclusion of several
checks to determine the reliability of its results, which gives also error estimates of the vibrational frequencies.
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I. INTRODUCTION

Most electronic structure calculations of molecules ad-
sorbed on metal surfaces as encountered in heterogeneous
catalysis and surface science are nowadays done using
density-functional theory with a periodic slab and a plane-
wave basis set �1�. Such calculations readily yield energies
and forces but not frequencies. The usual approach is to
use a finite-difference scheme �2�. After the geometry is
optimized and a structure corresponding to a minimum of
the potential-energy surface is determined, the atoms are
systematically displaced along the coordinate axes. The
force-constant matrix F can then be determined using

Fnm =
fn�r�0� − �em� − fn�r�0� + �em�

2�
, �1�

where fn is the force along coordinate n, r�0� are all coordi-
nates of the minimum, and �em is a displacement over �
along coordinate m. This expression gives correct results if
the minimum r�0� is determined accurately and if there are no
anharmonicities. The latter means making sure � is not too
large. However, if � is too small, then the denominator may
blow up the numerical noise in the forces and lead to large
errors in the force-constant matrix. Reasonable values for �
are known nowadays. Because Fnm=Fmn must hold, a com-
parison between these quantities calculated with the expres-
sion above gives information on how accurate one can ex-
pect the results to be. Note that we say nothing here about
errors that are due to the approximations in the method that
is used to do the electronic structure calculation. We are here
only concerned about how to determine vibrations from the
calculated energies and forces and the errors that are made in
the procedure that is used for that; i.e., we pretend that the
results from the electronic structure calculations are exact,
apart from some possible numerical noise.

The drawback of the finite-difference scheme that we
want to address here is the computational costs. If there are
Ncoord coordinates in a system and if we assume that a single-
point calculation yields all components of the forces, then we
need to do two single-point calculations per column of the
force-constant matrix, one with a displacement �em and one
with −�em. This means we need to do 2Ncoord single-point
calculations. We claim that in many cases these calculations

need not be done at all. When we are dealing with a mol-
ecule adsorbed on a metal surface, we are generally only
interested in the vibrations of that molecule and most of the
time even only in a few particular vibrations of that mol-
ecule. The coordinates that change in those vibrations are
generally also those that change most in a geometry optimi-
zation. That means that we may be able to extract the
potential-energy surface for the interesting vibrations from
energies and forces that were generated during the geometry
optimization. The method that we will describe in this paper
does just that. It first analyzes the results generated by a
geometry optimization and determines the subspace of the
whole configuration space for which a useful potential-
energy surface can be constructed. Then it computes the vi-
brations in that subspace. And finally it does an error analysis
for these vibrations. We would like to stress that our method
does not yield all vibrations. However, it takes very little
time. It is an interactive computation on a PC that normally
takes only a few minutes. One can always decide to do a full
normal mode analysis, but we have found that in most of our
cases a calculation of all vibrations as described above was
no longer necessary.

This paper is structured as follows. Section II describes
the method. It deals with how to determine the subspace of
configuration space for which one can construct a potential-
energy surface, how to determine the vibrations from that
potential-energy surface, and how to assess the reliability of
those vibrations. Section III illustrates the method by dis-
cussing two examples. One example is a regular minimum of
a potential-energy surface, but the other example is a struc-
ture for which one wants to know if it is a transition state.
Finally Sec. IV draws some conclusions and discusses the
applicability of our method to other systems and how the
method can be extended if one wants to compute all vibra-
tions. The Appendixes deal with some mathematical details
left out of Sec. II.

II. THEORY

A. Mathematical formulation of the problem

Suppose we have a set of Nstruct structures �r�� with
�=1,2 , . . . ,Nstruct and each r� a vector containing all
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Cartesian coordinates of the system. One way to obtain such
a set is by doing a geometry optimization, but we will not
restrict ourselves to this situation. We will assume that, apart
from the coordinates, we also have the forces �f�� for all
structures. To compute vibrations we need a potential-energy
surface �PES�. For the harmonic vibrations this PES should
be a harmonic force field of the form

V�r� = V0 + gTr +
1

2
rTFr, �2�

with V0 a constant, g a vector with the gradient of the force
field at r=0, and F the force-constant matrix or Hessian. The
forces for structure r are given by �3�

f�r� = − �V�r� = − g − Fr, �3�

where we have used the fact the F is a symmetric matrix.
We would like the force field V to represent the forces �f��

as accurately as possible. We therefore fit the force field V to
the forces. We use a least-squares procedure and minimize

�2 =
1

NstructNcoord
�
�=1

Nstruct

�f�r�� − f���2 �4�

as a function of the parameters in g and F of the harmonic
PES. Here Ncoord is the number of coordinates of the systems.
The constant V0 cannot be obtained from the forces, because
it does not affect f�r��. On the other hand, the vibrations also
do not depend on V0.

If the structures �r�� are arbitrary, it might not be possible
to determine all parameters. The number of structures might
be too small. The forces depend on Ncoord parameters in g
and Ncoord�Ncoord+1� /2 in F. Differentiating �2 with respect
to these parameters gives Ncoord�Ncoord+3� /2 linear equa-
tions, which will not have a unique solution if the number
of data for fitting is less than this number. The number of
data equals the number of structures times the number of
forces, or NcoordNstruct. So we have Nstruct� �Ncoord+3� /2 as a
necessary condition.

This condition is in general fulfilled if the structures are
obtained from a geometry optimization, because minimizing
the energy scales at best quadratically with the number of
coordinates �4�. The condition will not necessarily be suffi-
cient, however. A situation where it is not is when the opti-
mal geometry is symmetric and the symmetry is known be-
forehand. The structures �r�� from the geometry optimization
will then also have the same symmetry. Consequently the
forces will then contain no information on the PES that cor-
responds to structures of the system with a lower symmetry
and vibrations that reduce the symmetry cannot be deter-
mined. This means that at best only vibrations that transform
according to the total symmetric irreducible representation of
the symmetry group can be determined �5�. More generally,
we cannot determine vibrations in directions for which we
have no information of the PES.

The problem is then to determine the linear subspace of
configuration space for which �r�� and �f�� contain sufficient
information to construct a harmonic PES. We split this prob-
lem into two parts. First, suppose that we know that the

dimension of this subspace equals Ndof. �Ndof stands for the
number of degrees of freedom of the PES.� For the other
Ncoord−Ndof directions we assume that the PES is flat. We
then need to determine g and F, which minimize �2 with the
restriction that the rank of F be at most Ndof. Second, by
doing this for various values of Ndof and comparing the
results we can determine the number of directions for which
we can determine the PES reliably and determine the
vibrations in these directions.

B. Determining the force-constant matrix

We need to determine a PES with rank F�Ndof for a
given Ndof, and we need a way to compare the results for
various values of Ndof. We start with the fit of the PES. For g
we can find a simple closed expression

��2

�gn
= −

1

Nstruct
�
�=1

Nstruct

�fn�r�� − f�,n� = 0, �5�

with gn component n of the gradient, fn�r�� component n
of the force according to Eq. �3� for structure r�, and f�,n
the same force but now from our electronic structure
calculations. This leads to

g = − Fr̄ − f̄ , �6�

with

r̄ =
1

Nstruct
�
�=1

Nstruct

r� �7�

and

f̄ =
1

Nstruct
�
�=1

Nstruct

f�. �8�

Substitution of this expression into Eq. �4� gives

�2 = Tr�F2Arr + 2FAfr + A f f� , �9�

with the following correlation matrices:

Arr =
1

Nstruct
�
�=1

Nstruct

�r� − r̄��r� − r̄�T, �10�

A fr =
1

Nstruct
�
�=1

Nstruct

�f� − f̄��r� − r̄�T, �11�

and

A f f =
1

Nstruct
�
�=1

Nstruct

�f� − f̄��f� − f̄�T. �12�

Next we determine F. �An alternative approach to
the following can be found in Appendix A.� The trace in
Eq. �9� does not change if we transform to another basis. In
particular, if we take the basis that diagonalizes F, we get
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�2 = �
n=1

Ncoord

��n
2an

�rr� + 2�nan
�fr� + an

�f f�� , �13�

where �n is an eigenvalue of F, an
�rr� is the nth matrix ele-

ment on the diagonal of Arr on the basis formed by the
eigenvectors of F, and an

�fr� and an
�f f� the corresponding ma-

trix elements of A fr and A f f, respectively. This expression
tells us what the eigenvalues of F should be. Because Arr is
positive semidefinite per definition, we have an

�rr��0 and
each term in expression �13� is minimal when �n=
−an

�fr� /an
�rr� if an

�rr��0. If an
�rr�=0, then an

�fr�=0 holds as well,
because along the corresponding eigenvector of F there is no
variation in the structures. In that case we take �n=0. The
minimum value of �2 is then given by

�
n=1

Ncoord

an
�f f� − �

n

�an
�fr��2

an
�rr� , �14�

where the second summation extends over the eigenvalues
�n�0. This expression tells us how to choose the Ndof
eigenvalues of F different from zero that give the smallest
�2. We should take the Ndof components n with the largest
values for �an

�fr��2 /an
�rr� if an

�rr��0 and set �n=−an
�fr� /an

�rr�. For
all other n we should set �n=0. Because of numerical errors,
we will never find that an

�rr�=0 holds exactly. We therefore
regularize �an

�fr��2 /an
�rr� by replacing it by

�an
�fr��2an

�rr�

�an
�rr��2 + 	2 , �15�

with 	 a number small with respect to the largest of the
values an

�rr�.
So far we have only determined the eigenvalues of F. The

harder problem is to find the eigenvectors. We have found
that the following iterative algorithm works best. From
expression �9� we get

��2

�Fkl
= �FArr + ArrF + 2A fr

T �kl. �16�

Suppose we have an approximation F̃ of F; then, we do the

following. Minimize �2 for F̃+
�F̃Arr+ArrF̃+A fr+A fr
T � as a

function of 
. The expression in square brackets is the sym-
metrized version of ��2 /�Fkl. This is a minimization along a
line in the space of all symmetric force-constant matrices.
This gives us a new approximation for F, but one with a rank
that may be larger than Ndof. We therefore determine the
eigenvectors of this new approximation and compute corre-
sponding eigenvalues using �14�. This gives us a new ap-

proximation F̃ that does have a rank smaller or equal than
Ndof. This whole procedure has be repeated until conver-
gence. Appendix B shows two ways to obtain an initial guess
for F.

C. Determining the subspace dimension

The procedure above enables us to determine F for a
given Ndof. We now need a criterion to determine Ndof. Sim-
ply increasing Ndof will lead to smaller values of �2, but this

may be meaningless when the decrease in �2 is only caused
by a better fit of the noise in the data; i.e., we are overfitting
�6�. The simplest way to deal with the problem is to deter-
mine the vibrations for various values of Ndof and look for a
value that gives stable results; i.e., increasing or decreasing
Ndof from that value should not change the vibrations
substantially.

Another approach is to use cross validation. We partition
all structures in groups �Gk�. We then fit the PES to the
structures in Gk

�c�, where Gk
�c� consists of all structures except

those in Gk. We use this fit to predict the forces for the
structures in Gk. We do this for all groups Gk and use the
error estimate

�LMO
2 =

1

NcoordNstruct
�
�=1

Nstruct

�f�
�pred� − f��2, �17�

where fm
�pred� is the predicted force based on the fit of the

structures in Gk
�c� if structure m is in group Gk. This error

estimate is called the leave-many-out �cross-validation� error
or, if the groups each consist of a single structure, the leave-
one-out error �6�. If we look at how �LMO

2 changes with Ndof,
we see that it first decreases, but then flattens out or even
increases wheres �2 of Eq. �4� keeps decreasing. This can be
interpreted as an indication of overfitting.

The exact value of Ndof where �LMO
2 has a minimum or

where it flattens out is not always easy to determine. More-
over, this value will depend on how the groups are chosen
and the precise values of the errors in the forces. �We put the
structures in groups randomly, but try to make the groups of
the same size.� We use �LMO

2 therefore only as an indicator of
overfitting. We also use another indicator, which is a small
change to Eq. �4�. Instead of dividing by the number of data,
we divide by the number of data minus the number of pa-
rameters in the fit. This difference can be regarded as the
number of degrees of freedom in the fit and leads to the
standard residual deviation

�SRD
2 =

1

NstructNcoord − Npar
�
�=1

Nstruct

�f�r�� − f���2. �18�

The second term in the denominator is the number of
parameters in Eq. �3� with a force-constant matrix of
rank Ndof. The number of parameters in this matrix can
be computed by realizing that for each eigenvector with a
nonzero eigenvalue one needs Ncoord−m parameters, with m
the number of restrictions due to the fact that the eigenvector
should be normalized and orthogonal to the other eigenvec-
tors. Each nonzero eigenvalue is another parameter determin-
ing F, and there are Ncoord parameters in g. So in total there
are Npar=Ncoord+Ndof+�m=1

Ndof�Ncoord−m�=Ncoord+Ndof�2Ncoord

−Ndof+1� /2 parameters to specify the PES. The error esti-
mate �SRD

2 will always increase for large Ndof, because the
denominator decreases with Ndof whereas the summation will
converge to NcoordNstruct�

2.
The third approach we have followed to determine Ndof is

to compute error estimates of the vibrational frequencies us-
ing a Monte Carlo simulation �4�. The vibrations should not
be sensitive to the exact values of the forces f�,n. After we
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have fitted the PES by minimizing �2 for a certain Ndof, we
repeat the procedure several times, but with f�,n+N�	�2� in-
stead of f�,n, where N�	�2� is a random number from a nor-
mal distribution centered at 0 and with a width 	�2. If there
are vibrations that change a lot, then we may be overfitting.

D. Determining the vibrations

Once the force-constant matrix F is known, the vibrations
follow from the dynamical matrix �3�

Dkl =
Fkl

	mkml

, �19�

with mk and ml the masses of the atoms with coordinates k
and l, respectively. The eigenvalues of D are the squares of
the �angular� vibrational frequencies, and the eigenvectors
give the directions in which the atoms move when vibrating.

A nonlinear molecule will have six vibrations with zero
frequency. They correspond to three overall translations and
three overall rotations. A system that is periodic in three
directions will have only three zero-frequency translations
corresponding to overall translations. Because our PES var-
ies only in a subspace of the whole configuration space and
is assumed to be flat in directions perpendicular to this sub-
space, we will find many more vibrations with zero fre-
quency. One might therefore be tempted to restrict the calcu-
lation of the vibrations to the subspace in which the PES
varies. This is, however, not a good idea. The reason is that
the vibrational displacements are orthogonal in the usual Eu-
clidean sense only in mass-weighted coordinates, whereas
the eigenvectors of the force-constant matrix are orthogonal
in normal Cartesian coordinates. Restricting the calculations
to the subspace in which the PES varies forces an incorrect
orthogonality condition on the eigenvectors of the dynamical
matrix. In particular, one gets vibrations that change the
center of mass and for molecules also the moments of inertia.

III. ILLUSTRATIVE EXAMPLES

In this section we present some examples to show the
advantages and shortcomings of determining vibrations from
geometry optimization data. All examples are taken from our
work on molecules adsorbed on surfaces of transition metal
catalysts. Vibrational spectroscopy is often used for these
systems to determine the adsorption site and geometry, as the
vibrations of the adsorbate depend on where and how it
binds to the catalyst. Although one is interested in the adsor-
bate vibrations, there can be a coupling to the substrate vi-
brations. If one follows the usual method to determine the
vibrations, there is the question of how many substrate atoms
to include. One would like include as few substrate atoms as
possible, but fixing too many substrate atoms may give in-
correct vibrations. We will see that our method automatically
includes the appropriate substrate atoms, because these are
also the atoms that move when the geometry of the system is
optimized.

All our electronic structure calculations where done with
the VASP code �7�. This is a program that does density-
functional-theory �DFT� calculations of periodic systems. It

solves the Kohn-Sham equations with a plane-wave basis
set and the �relativistic� ultrasoft pseudopotentials introduced
by Vanderbilt �8� and generated by Kresse and Hafner �9�.
The generalized gradient approximation of Perdew and Wang
�PW-91� has been used, because it generally yields good
bond energies and vibrations �10�. The code typically gives
energies and forces for each structure, but not the
force-constant matrix.

Our first example is NH3/Pt�111�. All calculations on this
system were done with a surface model consisting of a su-
percell with a slab of five metal layers separated by five
metal layers replaced by vacuum and a 2�2 unit cell. NH3
molecules were adsorbed on both sides of the slab, yielding
structures with S2 symmetry to avoid dipole interactions be-
tween slabs �see Fig. 1�. A 5�5�1 grid for Brillouin zone
sampling obtained via the Monckhorst package was used and
a cutoff of 400 eV. This yielded adsorption energies per

FIG. 1. Supercell used in the DFT calculation of NH3 on
Pt�111�. This cell is periodically repeated in all three directions.
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adsorbate converged to within 5 kJ/mol with respect to
k-point sampling, energy cutoff, number of slab and vacuum
layers, and cell size. The NH3 molecules adsorb on top po-
sitions with a binding energy of −68 kJ/mol �11�. The geom-
etry optimization yielded 98 different structures that all were
used to fit the PES.

Figure 2 shows how the different error estimates �2,
�LMO

2 , and �SRD
2 change with an increasing number of de-

grees of freedom in the PES. The root-mean-square deviation
�2 decreases monotonically as expected. The leave-many-out
error �LMO

2 decreases as well, but its behavior is more erratic.
Up until Ndof=16 there is a clear decrease, but after that there
is no significant decrease. Ideally, the �LMO

2 should have a
minimum, but it is hard to specify exactly where that is.
Especially, if we realize that the precise value �LMO

2 depends
on how the structures were partitioned into groups, it is even
hard to say if there is a minimum at all. The standard residual
deviation �SRD

2 resembles �2, but because of the different
denominator, its value increases for large Ndof. Consequently,
it has a minimum, which is in this case at Ndof=19.

The different error estimates show that for Ndof between
16 and 19 the fit of the PES does not improve substantially
and that we start overfitting. To see what this means we
computed the PES’s for an even larger range of different
numbers of degrees of freedom and calculated for each the
vibrations. Figure 3 shows the results. The figure distin-
guishes between vibrations that vary only little when we
change the PES using the Monte Carlo method mentioned in
Sec. II C and those that vary a lot. The former have typically
errors between 5 and 20 cm−1, whereas the latter typically
have errors larger than 100 cm−1. As there are also a few
vibrations with errors between 20 and 100 cm−1 we take as a
dividing line somewhat arbitrarily 50 cm−1. Apart from the
difference in the error estimates of the vibrations, these vi-
brations also differ in how they vary with the number of
degrees of freedom in the PES. The vibrations with small
errors vary hardly at all with Ndof, but that is not the case for
the other vibrations. This means that the choice of Ndof is not
critical, if one only looks at the vibrations with small error

estimates and that the method to determine these vibrations
is very robust. Nevertheless, overfitting the PES should be
avoided. A too large value of Ndof results in larger values for
the error estimates of the vibrational frequencies, and it may
result in spurious vibrations that can be hard to distinguish
from the real vibrations. In this example this starts happening
at Ndof=17 when there is suddenly a vibration with a fre-
quency of about 26 000 cm−1.This is a clear indication of
overfitting, but we have found in other systems that spurious
vibrations do not always have such unusual frequencies.

The vibrations that are determined best are also the most
important ones: the asymmetric stretches �at 3525±5 and
3522±6 cm−1 for Ndof=16�, the symmetric stretch �at
3381±5 cm−1�, the scissor modes �at 1534±14 and
1526±13 cm−1�, and the umbrella mode �at 978±12 cm−1�.
These values should be compared to values that are obtained
with a normal frequency calculation, which yields 3529,
3528, 3376, 1555, 1552, and 1040 cm−1, respectively �11�.
The agreement is excellent, especially considering that the
latter took more than 2 processor weeks on the a PC with
1600 MHz AMD 242 Opteron processors, whereas the
former took only a few minutes on a PC with a single
1800-MHz AMP processor. Of course, the latter calculation
also yielded the other vibrations of the adsorbate.

We note that the higher frequencies have smaller errors.
An explanation for this observation is the following.
The errors in the forces are probably similar for all forces.
Because frequencies depend on the square root of the forces,
the errors in the frequencies are inversely proportional
the square root of the forces; because �=	f /m, a change
in the force f → f +�f causes a change in the frequency
�→�+�� with ��=�f	1/4mf .

Our second example is NO/Pt�111�. Maybe even more
useful than the determination of vibrational frequencies is
our method for the verification of transition states.
Transition-state searches regularly end in higher-order saddle
points. It is therefore necessary to determine the number of
negative eigenvalues of the force-constant matrix, or the

FIG. 2. The leave-many-out error 	�LMO
2 �upper solid circles�,

the standard residual deviation 	�SRD
2 �lower solid circles�, and the

root-mean-square deviation 	�2 �open circles� for the fit of the PES
for NH3/Pt�111� as a function of the number of degrees of freedom.
All errors are given in eV/Å. For 	�LMO

2 the structures were parti-
tioned randomly into three groups.

FIG. 3. The vibrational frequencies �in cm−1� as a function of
the number of degrees of freedom of the potential-energy surface.
Solid circles depict vibrations with small error estimates, open
circles with large estimates �see text�. The horizontal dashed lines
indicate the vibrational frequencies determined with a normal fre-
quency calculation; those at 3528, 1554, 642, and 163 cm−1 are
twofold degenerate �11�.
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number of imaginary frequencies. A transition state should
have only one. The normal procedure is to do a normal-mode
analysis for the structure corresponding to the candidate tran-
sition state. Instead, we suggest to employ the method of this
paper.

The method cannot prove that a certain structure is a tran-
sition state. It may not find all imaginary frequencies. So if it
finds no or only one imaginary frequency, it may still mean
that we have a higher-order saddle point. If it finds two or
more imaginary frequencies, however, we can exclude the
possibility of a transition state, and we use the eigenvectors
corresponding to the negative eigenvalues of the force-
constant matrix to find a better candidate. We have found that
our method is actually quite reliable as far as the number of
imaginary frequencies is concerned, even though it provides
no certainty. We think that this is caused by the fact that the
methods for finding a transition state approach the transition
state from lower energies and consequently sample the direc-
tions of the negative eigenvalues of the force-constant matrix
quite well.

To illustrate the method for transition states we will dis-
cuss the dissociation of NO on Pt�111� �11�. The computa-
tional details are the same as for NH3/Pt�111� above. The
transition-state search consisted of the nudged-elastic-band
method to get an approximate structure �12� and the quasi-
Newton method for fine-tuning �13�. NO preferentially ad-
sorbs on fcc sites, and when it dissociates the N atom stays at
that site whereas the O atom moves to another fcc site
nearby. We have found two possible transition states for this
process. In the correct transition state the atoms are already
the same distance apart as in the final state, but they are both
at bridge site. Figure 4 shows the other candidate transition
state. Table I gives the frequencies and their error estimates.

As the transition state was particularly hard to find, the
transition-state search methods yielded no less than 307
structures near the candidate transition state. From this we
could determine in total 37 frequencies. This number is the
number of degrees of freedom for which �SRD

2 is minimal. As
all errors are quite small, it seems that in this case many
more frequencies can be determined than for the case of
NH3/Pt�111�. This is probably due to the large number of
structures.

We also see that two frequencies are imaginary. This in-
dicates that we have a higher-order saddle point. �Because
the errors are small, it seems very unlikely that either of
these vibrations are spurious.� The corresponding eigenvec-
tors of the dynamical matrix show that the vibration at
i426 cm−1 has the atoms move in opposite directions,
whereas the vibration at i132 cm−1 has them moving almost
parallel. Because the latter does not change the N-O dis-
tance, it seems likely that this does not correspond to the
reaction coordinate. We therefore distorted the system in the
direction of this eigenvector and started another transition-
state search. This gave us the proper transition state de-
scribed above. Both our method and the usual finite-
difference method gave just one imaginary frequency for the
corresponding structure.

The two examples above are taken from two projects on
the reduction and oxidation of NH3. In these projects we
have used our method to compute vibrations from geometry
optimizations in many other cases; we have looked at differ-
ent adsorbates �NHx, OHy, N, O, H� that can adsorb on dif-
ferent sites �top, bridge, fcc, hcp� of different surfaces
�Pt�111�, Pt�112�, Rh�111��, at initial states of reactions with
many combinations of coadsorbed species, and at the transi-
tion states of all reactions. For the most important adsorption
structures and reactions we have compared the results of our
method with the results from the finite-difference method. In
all cases where we did this the agreement between the two
was as good as the agreement in the two examples above.
This suggests that our method is quite reliable and for
complicated reaction systems like ours very useful.

IV. CONCLUSIONS

We have shown here a method to compute harmonic
vibrations that uses the structures and the forces that are

FIG. 4. A candidate transition state for NO dissociation on
Pt�111�. Both figures show the same structure, but the arrows indi-
cate different normal modes with imaginary frequencies i426 cm−1

on the left and i132 cm−1 and on the right. The large spheres are Pt
atoms. The darker small sphere is the N atom. The other small
sphere is the O atom.

TABLE I. Frequencies of a candidate transition state for NO
dissociation on Pt�111�. Error estimates calculated as described at
the end of Sec. II C are less than 2 cm−1 for all frequencies.

Method Frequencies �in cm−1�

This paper 612, 460, 331, 289, 190, 182, 176, 171,
168, 159, 152, 150, 140, 137, 132, 122,

111, 108, 105, 100, 95, 92, 86, 84,
78, 75, 69, 60, 58, 54, 48, 42,

34, 29, 15, i132, i426

Finite difference 612, 460, 329, 290, 180, 160, 148, 144,
102, 86, 79, 74, 63, 59, 39, 29,

i127, i431
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obtained from a geometry optimization. Compared to the
normal procedure that is used in conjunction with a DFT
calculation, which uses a finite-difference scheme, the
method here has the main advantage that it is much faster.
�We often find speed ups of three or four orders of magni-
tude.� The reason for this is that it does not require additional
electronic structure calculations. Instead it does very inex-
pensive fits. In addition it does not require a good determi-
nation of the stationary point of the potential-energy surface;
such a point is a result of the method. The main drawback of
the method is that it does not guarantee any particular vibra-
tion. Because it is so fast, however, little is lost when it does
not give satisfactory results. One can always use other meth-
ods in such a situation. The method includes several checks
to determine the reliability of its results, but it seems to be
quite robust.

The particular vibrations that one can determine with the
method of this paper depend on the structures that are gen-
erated during the geometry optimization. These need not
have much to do with the vibrations. So there is an element
of arbitrariness involved. If we want to have information on
particular vibrations, then we can try to influence the geom-
etry optimization by starting with a structure that is distorted
according to the vibrations that we are interested in. In prin-
ciple, it should be possible in this way to obtain all vibrations
of a system. Whether this is then still more efficient than
using the normal finite differencing is not clear.

We have applied the method mainly to vibrations of small
molecules adsorbed on transition metal surfaces and to the
verification of transition states of such molecules. The
method seems to work very well for such systems. The rea-
son is that geometry optimization and transition-state
searches of such systems lead to many different structures,
the relevant vibrations include only a few degrees of free-
dom, and the potential-energy surface along those few de-
grees of freedom is sampled quite well. Other systems with
this characteristic should also be good candidates for the
method.
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APPENDIX A: AN ALTERNATIVE APPROACH TO
DETERMINE THE FORCE-CONSTANT MATRIX

We can write the force-constant matrix with rank
F�Ndof as

F = U�UT, �A1�

where � is a diagonal matrix of dimension Ndof and U is a
Ndof�Ncoord matrix with columns that are orthonormal. �

contains the eigenvalues and U the eigenvectors of F. The
matrix � can be determined as described following Eq. �14�.
Here we discuss two other ways to determine U.

One way is to regard �2 in Eq. �9� as a function of the
matrix elements of U and use a standard minimization rou-
tine to determine U. Because we have the restriction of or-
thonormality of the columns, we cannot work with U directly
in such a routine. We therefore write U=exp�X�, where X is
an antisymmetric matrix; XT=−X. With XV= iV�, � real
and diagonal, and V−1=VT we have U=V exp�i��VT. This
shows how to compute U from X. The advantage of X is that
we can just take the matrix elements of the upper-right part
without being bothered by any restrictions. So we minimize
�2 as a function of X. It turns out that this works, but unless
Ndof is very small �less than 10�, this approach appears to be
very time consuming.

Another way to determine U might be the following. The
derivative of �2 with respect to U is given by

��2

�Ukl
= 2��UT�FArr + ArrF��kl. �A2�

Together with the restriction on the orthonormality of the
columns of U, which can be taken into account using Lan-
grange multipliers, this gives an expression that determines
U. Unfortunately, we were not able to find a method to solve
this expression.

APPENDIX B: APPROXIMATIONS
TO THE FORCE-CONSTANT MATRIX

To start the iterative procedure to determine the force-
constant matrix as described following Eq. �16�, we need a
first approximation for the matrix. One way to obtain such an
approximation is to assume some set of eigenvectors and
calculate the eigenvalues according to the procedure de-
scribed following Eq. �14�. We have found that one good set
of eigenvectors can be obtained by diagonalizing A frArr

−1A fr
T

as the eigenvalues of this matrix appear to approximate the
terms �an

�fr��2 /an
�rr� in Eq. �14� well.

Alternatively we can get a closed expression for the ma-
trix F if we weaken the restriction on its form. If we only
require that F be symmetric, then we can minimize �2. The
symmetrized derivative of �2 with respect to the matrix ele-
ments of F has been shown in Sec. II B to be FArr+ArrF
+A fr+A fr

T . This should be equal to 0. With

ArrE = E� �B1�

and E orthogonal and � diagonal we get

ETFE� + �ETFE = − ET�A fr + A fr
T �E . �B2�

Taking matrix element �n ,m� this becomes

�nn + mm��ETFE�nm = − ��ETA frE�nm + �ETA frE�mn� ,

�B3�

or

�ETFE�nm = −
�ETA frE�nm + �ETA frE�mn

nn + mm
. �B4�
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Because Arr is often singular, this expression can lead to
numerical problems. One might think that the whole problem
should be solved in the subspace of the range of Arr, but that
does not lead to the best force-constant matrix. In particular
we get �ETFE�nm=0 if nn=0 or mm=0, whereas when one
really only wants �ETFE�nm=0 if nn=0 and mm=0. This
can be accomplished by regularization of Eq. �B4�; i.e., we
use

�ETFE�nm = −
��ETA frE�nm + �ETA frE�mn��nn + mm�

�nn + mm�2 + 	2 ,

�B5�

with 	 a number small with respect to the largest eigenvalues
of Arr.
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